Zidovudine concentration in brain extracellular fluid measured by microdialysis: steady-state and transient results in rhesus monkey.

نویسندگان

  • Elizabeth Fox
  • Peter M Bungay
  • John Bacher
  • Cynthia L McCully
  • Robert L Dedrick
  • Frank M Balis
چکیده

We measured zidovudine concentrations in blood, muscle, and brain extracellular fluid (ECF) by microdialysis and in serum ultrafiltrate and cerebrospinal fluid (CSF) samples during a continuous intravenous infusion (15 mg/kg/h) and after bolus dosing (50-80 mg/kg over 15 min) in nonhuman primates to determine whether CSF drug penetration is a valid surrogate for blood-brain barrier penetration. Recovery was estimated in vivo by zero net flux for the continuous infusion and retrodialysis for the bolus dosing. In vivo recovery was tissue-dependent and was lower in brain than in blood or muscle. Mean (+/-S.D.) steady-state blood, muscle, and brain zidovudine concentrations by microdialysis were 112 +/- 63.8, 105 +/- 51.1, and 13.8 +/- 10.4 microM, respectively; and steady-state serum ultrafiltrate and CSF concentrations were 81.2 +/- 40.2 and 14.1 +/- 8.0 microM, respectively. Brain ECF penetration (microdialysis brain/blood ratio) and CSF penetration (standard sampling CSF/serum ratio) at steady state were 0.13 +/- 0.06 and 0.17 +/- 0.02, respectively. With bolus dosing the mean (+/-S.D.) zidovudine area under concentration-time curve (AUC) normalized to a dose of 80 mg/kg was 577 +/- 103 microM. h in blood, 528 +/- 202 microM. h in muscle, and 108 +/- 74 microM. h in brain (brain/blood ratio of 0.18 +/- 0.10) by microdialysis. Serum ultrafiltrate AUC was 446 +/- 72 microM. h and the CSF AUC was 123 +/- 4.7 microM. h (CSF/serum ratio of 0.28 +/- 0.06). In conclusion, recovery was tissue-dependent. CSF and brain ECF zidovudine concentrations were comparable at steady state, and the corresponding AUCs were comparable after bolus injection. Thus, zidovudine penetration in brain ECF and CSF in nonhuman primates is limited to a similar extent, presumably by active transport, as in other species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metronidazole and hydroxymetronidazole central nervous system distribution: 1. microdialysis assessment of brain extracellular fluid concentrations in patients with acute brain injury.

The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebr...

متن کامل

Probenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study.

Delivery of valproic acid (VPA) to the human brain is relatively inefficient as reflected by a low brain-to-unbound plasma concentration ratio (< or =0.5) at steady state. Previous pharmacokinetic studies suggested that the unfavorable brain-to-plasma gradient is maintained by coupled efflux transport processes at both the brain parenchymal cells and blood-brain barrier (BBB); one or both of th...

متن کامل

Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

Morphine has been predicted to show nonlinear blood-brain barrier transport at lower concentrations. In this study, we investigated the possibility of separating active influx of morphine from its efflux by using very low morphine concentrations and compared accelerator mass spectrometry (AMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a method for analyzing microdialysis...

متن کامل

Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations.

Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinet...

متن کامل

Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats.

A comprehensive in vivo evaluation of brain penetrability and central nervous system (CNS) pharmacokinetics of atomoxetine in rats was conducted using brain microdialysis. We sought to determine the nature and extent of transport at the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) and to characterize brain extracellular and cellular disposition. The steady-state extrace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2002